

International league. Математический бой № 1

3 марта

1. Таблица 10 × 10 заполнена целыми числами. Алекс для каждой пары клеток с общей стороной записал на листке сумму чисел в них. Мог ли у него получиться набор 1, 2, 3, ..., 180?

2. Некоторые клетки бумажного белого квадрата 4 × 4 закрашены в серый цвет (см. левый рисунок). Разрежьте квадрат на четыре одинаковые фигуры так, чтобы, только поворачивая (но не переворачивая на другую сторону), можно было сложить из них квадрат,

в котором окажутся закрашенными все диагональные клетки (см. правый рисунок).

3. Найдите наименьшее простое число p, сумма цифр которого — нечетное составное число.

4. Полчаса назад угол между часовой и минутной стрелкой был 100 градусов. Сейчас он острый. Чему может быть равен этот угол (найдите все возможные значения)?

5. На кольцевой дороге стоят по часовой стрелке пункты A, B, C, D и E. Путь по кольцу из B в E по часовой стрелке на 100 км длиннее, чем против часовой. Путь по кольцу из A в C по часовой стрелке на 70 км короче, чем против часовой. Какой из путей по кольцу по часовой стрелке короче и на сколько: из B в C или из E в A?

6. В турнире участвовало 16 команд. Некоторые команды сыграли друг с другом. Скажем, что команда С *связывает* команды А и В, если С сыграла вничью и с А, и с В. Могло ли случиться, что для любых двух команд число связывающих их команд равно 2?

7. Назовем склеенный из двух кубиков параллелепипед $1 \times 1 \times 2$ малым. Можно ли поверхность 6 малых параллелепипедов окрасить в черный и белый цвет так, чтобы из них можно было сложить как белый снаружи параллелепипед $2 \times 2 \times 3$, так и черный снаружи параллелепипед $2 \times 2 \times 3$?

8. У двух восьмизначных чисел произведения цифр положительны и равны. В каждом из чисел все цифры различны. Докажите, что у этих чисел равны и суммы цифр.

II European math tournament Minsk, March 1–7, 2019

International league. Math battle N° 1

March, 3

1. Table 10×10 is filled with integers. Alex for each pair of cells with a common side wrote on a sheet the sum of the numbers in them. Could he receive a set of $1, 2, 3, \ldots, 180$?

2. Some cells of the 4×4 white paper square are painted gray (see left figure). Cut the square into four identical figures so that one can fold a square in which all the diagonal cells are painted gray (see the right figure). The figures can be rotated, but not turned on the other side.

3. Find the minimal prime number p whose sum of digits is an odd composite number.

4. Half an hour ago the angle between the hour and the minute clock hands was 100°. The angle is acute now. What can this angle be (find all possible values)?

5. There are five points A, B, C, D and E clockwise on a ring road. The clockwise path through the ring from B to E is 100 km longer than the counterclockwise one. The clockwise path along the ring from A to C is 70 km shorter than the counterclockwise one. Which of the clockwise paths is shorter and by how much: from B to C or from E to A?

6. 16 teams participated in a tournament. Some teams played with each other. Let's say that the team C *connects* teams A and B, if C played a draw with both A and B. Is this possible that for any two teams the number of teams connecting them is 2?

7. Let's call the parallelepiped $1 \times 1 \times 2$ *small*. Is it possible to paint the surfaces of 6 small parallelepipeds in black and white so that those parallelepipeds can be folded into a parallelepiped $2 \times 2 \times 3$ painted white outside, as they can be folded into a parallelepiped $2 \times 2 \times 3$ painted blackoutside?

8. There are two eight-digit numbers with the same positive products of digits. In each number all the digits are different. Prove that the numbers have the same sums of digits.